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Chronic Inflammation in tumor microenvironments is not only associated with various 
stages of tumor development, but also has significant impacts on tumor immunity and 
immunotherapy. Inflammasome are an important innate immune pathway critical for the 
production of active IL-1β and interleukin 18, as well as the induction of pyroptosis. 
Although extensive studies have demonstrated that inflammasomes play a vital role in 
infectious and autoimmune diseases, their role in tumor progression remains elusive. 
Multiple studies using a colitis-associated colon cancer model show that inflammasome 
components provide protection against the development of colon cancer. However, very 
recent studies demonstrate that inflammasomes promote tumor progression in skin and 
breast cancer. These results indicate that inflammasomes can promote and suppress 
tumor development depending on types of tumors, specific inflammasomes involved, 
and downstream effector molecules. The complicated role of inflammasomes raises new 
opportunities and challenges to manipulate inflammasome pathways in the treatment of 
cancer.
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iNTRODUCTiON

Emerging evidence indicates that chronic inflammation plays an important role at all stages of 
tumor development, including initiation, growth, invasion, and metastasis (1–7). As part of the 
immune surveillance system, various innate immune pathways may engage with cellular compo-
nents released from dead tumor cells due to hypoxia, chemotherapy, radiotherapy, or an immune 
attack (8–11). The innate immune cells activated by tumors or tumor components may induce 
antitumor immunity through the recruitment of effector cells or promote tumor development by 
providing a pro-inflammatory environment (Figure 1). While there are numerous studies on the 
involvement of toll-like receptors (TLRs) or interferon (IFN) pathways in tumor development  
(9, 12–16), the role of inflammasomes in tumor development is poorly characterized. The inflam-
masome is a novel innate immune pathway involved in the production of active IL-1β and interleu-
kin 18 (IL-18), which are potent inflammatory cytokines (11, 17–21). Extensive evidence indicates 
that inflammasomes play a vital role in pathogen infections and autoimmune diseases. However, 
their role in tumor progression remains unclear. Many published studies use colitis-induced colon 
cancer as an animal model to investigate the role of inflammasomes in cancer. Results from those 
studies indicate that inflammasome components provide protection against tumorigenesis in 
colitis-associated colon cancer (22–29). Yet recent studies from our group and others demonstrate 
that inflammasomes can promote tumor development in certain types of cancer (30–32).
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FigURe 1 | The dynamic role of the inflammasome in tumor development. 
The inflammasomes can promote or inhibit tumor progression depending on 
context. In colitis-associated colon cancer, inflammasome-derived interleukin 
18 (IL-18) supports intestinal barrier function and induces tumor surveillance 
at the intestinal mucosal surface. For breast cancer and skin cancer, 
IL-1β-induced inflammation and immunosuppression promote tumor growth 
and metastasis. Tumor microenvironments and gut microbiota may also 
influence tumor progression and host antitumor immunity.
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In this review, we will discuss how the inflammasome and 
its effector pathways influence the pathogenesis of various 
types of cancer (Figure 1). The first part of the paper provides 
basic information about inflammasomes. Subsequently, we use 
a colitis-associated colon cancer model to illustrate the protect 
role of inflammasomes against tumors. Then, we utilize skin 
and breast cancer models to demonstrate the tumor-promoting 
effects of inflammasomes. Finally, we list some questions about 
inflammasomes and cancer in the perspective section.

inflammasomes
The inflammasome is a major component of the innate immune 
system that functions to induce maturation of inflammatory 
cytokines such as Interleukin 1 (IL-1β) and IL-18 in response to 
infection or autogenous danger signals (33–39). An inflamma-
some is a multimolecular complex, composed of a NOD-like pro-
tein (NLR), the adaptor apoptosis-associated speck-like protein 
containing a caspase recruitment domain (ASC), and caspase-1. 
NLRs belong to host pattern-recognition receptors (PRRs) that 
recognize pathogen-associated molecular patterns (PAMPs) 
from bacteria or viruses to initiate the innate immune response 
(11, 20, 40–42). These PRRs can be found on the membrane 
surface, e.g., TLRs and C-type lectin receptors, or intracellularly, 
e.g., NOD-like receptors (NLRs) and RIG-I-like receptors. Like 
TLRs, NLRPs also interact with endogenous ligands or damage-
associated molecular patterns (DAMPs) from normal host tissues 
or tumor cells to induce autoimmune diseases or an antitumor 
response. In recent years, NLRP proteins have attracted lots of 
attention because some of them can form inflammasomes.

The NLRs generally comprise of a caspase recruitment domain 
(CARD), or pyrin (PYD) at the N-terminus, a nucleotide-binding 

and oligomerization domain (NBD or NACHT) in the middle, 
and leucine-rich repeat (LRR) at the C-terminus (23, 33, 43, 44). 
The CARD or PYD interacts with the PYD domain in ASC or 
other downstream signaling molecules, NACHT is involved in 
oligomerization and other regulatory functions, whereas LRR 
functions as a sensor or signal receiver from PAMPs and DAMPs. 
Production of mature or active IL-1β needs two signals: the first 
signal is initiated by TLR ligands or endogenous molecules to 
induce the expression of pro-IL-1β proteins; the second is trig-
gered by very diverse stimuli activating inflammasomes, leading 
to caspase-1-dependent conversion of pro-IL-1β to mature 
IL-1β. Upon engagement of endogenous or exogenous stimuli, 
NLRP proteins interact with ASC and caspase-1 and undergo 
oligomerization, eventually forming a huge signaling complex. 
When pro-caspase-1 is associated with ASC and NLRPs, it 
undergoes self-cleavage to form an active form of caspase-1 
enzyme, which in turn process pro-IL-1 and pro-IL-18 proteins 
into their active forms. Activation of inflammasomes also leads 
to a form of inflammatory cell death, termed as pyroptosis, 
through a pore-forming protein gasdermin D (45–48). NLRs 
have about 22 family members in the human genome and more 
than 30 members in the mouse genome. Many, but not all, 
NLRs can form inflammasomes. While the NLR, pyrin domain 
containing 3 (NLRP3) inflammasome is the most studied one 
in this group of signaling complexes, other inflammasomes, 
including NLRP1, NLRC4, and NLRP12 inflammasomes, have 
also been identified (33–39). In addition to NLRs, the HIN200 
family members absent in myeloma 2 (AIM2) and IFN-inducible 
protein 16 (IFI16) can assemble inflammasomes with ASC and 
caspase-1 (49, 50). AIM2 has been shown to form an inflamma-
some in response to bacterial DNA, viral DNA, or endogenous 
DNA released during cellular damage (49–51). Similarly, IFI16 
recruits ASC and caspase-1 to assemble an inflammasome upon 
sensing DNA from Kaposi sarcoma-associated herpes virus 
(52–55). Because of its potential to recognize host DNA, AIM2 
may contribute to the development of autoimmune diseases, 
including systemic lupus erythematosus, psoriasis, and arthri-
tis. Furthermore, recent studies show that AIM2 is required to 
mediate protection against colorectal cancer (56–61). Generally, 
each type of inflammasomes, except NLRP3, recognizes defined 
molecular patterns from pathogens. For example, NLRC4 senses 
cytoplasmic flagellin and bacterial type III secretion apparatus 
from Gram-negative bacteria such as Salmonella typhimurium. 
NLRP1 can sense muramyl dipeptide, and Bacillus anthracis 
lethal toxin. AIM2 recognizes cytoplasmic DNA from host or 
pathogens (33–39). Although many stimuli with very diverse 
and unrelated molecular structures can trigger the activation of 
the NLRP3 inflammasome, the underlying molecular mecha-
nisms remain elusive.

NOD-like receptor proteins have been shown to be associated 
with various autoimmune or inflammatory diseases. For exam-
ple, NOD1 and NOD2 have been implicated in the pathogenesis 
of inflammatory bowel disease (IBD) (62, 63). Mutations in the 
human NLRP3 gene is associated with a group of autoimmune 
diseases termed as cold-induced auto-inflammatory syndrome, 
including familial cold-induced auto-inflammatory syndrome, 
Muckle–Wells syndrome, and NOMID/CINCA (neonatal onset 
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multisystem inflammatory disorder or chronic infantile neurologic 
cutaneous and articular syndrome) (34, 64–67). Accumulating 
evidence shows that NLRP3 inflammasome is involved in a wide 
array of autoimmune and inflammatory diseases, such as IBD, 
liver steatosis, cardiovascular disease, rheumatoid arthritis, type 
one diabetes, and neurologic diseases (21, 23, 38, 43, 64, 68–71).

IL-1β and IL-18 are potent inflammatory cytokines that 
trigger various signaling pathways, including NF-κB, MAPK, 
and PI3K pathways (72–76). They are members of the IL-1 
family of cytokines produced by macrophages and other cells 
during an immune response. Previous clinical studies also reveal 
that increased IL-1β in tumor tissues is associated with poorer 
prognosis (72, 77–80). Although inflammasomes are essential for 
host defense against pathogens and contribute to autoimmune 
diseases, their roles in tumor progression remain controversial. 
Results from published studies have shown that inflammasomes 
can inhibit or promote tumor growth and progression. Currently, 
we have very limited knowledge of the mechanisms responsible 
for inflammasome activation during tumor development and 
therapies.

inflammasomes inhibit Cancer 
Development in Colitis-Associated  
Colon Cancer
A series of studies using various NLRP or caspase-1-deficient 
mice have reported that inflammasome activities protect mice 
from colitis-associated colon cancer (CAC) induced by azox-
ymethane/dextran sodium sulfate (AOM/DSS) (22–29). In this 
model, DSS in drinking water causes damage to the epithelial 
barrier, resulting in massive inflammation induced by gut 
microflora. AOM is a potent carcinogen causing DNA damage 
in epithelial cells. Repeating DSS administration cause chronic 
inflammation, which promotes colorectal cancer development in 
cells harboring mutations elicited by AOM. Results from these 
studies show that mice deficient for inflammasome components, 
including NLRP3, caspase-1, NLRP1, NLRP6, and NLRC4, are 
highly susceptible to colitis-associated colon cancer induced by 
AOM/DSS by displaying severe intestinal inflammation, and 
increased number of colon polyps (22–29).

While inflammasome-deficient mice are generally susceptible 
to DSS-induced colitis, the results on a particular NLRP may 
vary. For instance, Hu et al. showed NLRC4 and caspase-1 control 
colitis-associated tumorigenesis (81). In the AOM/DSS-induced 
colorectal cancer model, NLRC4 and caspase-1 KO mice exhibited 
increased tumor load and tumor number per mice. However, the 
authors found no difference in colitis-associated colon cancer 
between the NLRP3-deficient and WT mice (81). In contrast, 
Allen et  al. found that NLRC4 had no protective role in tumo-
rigenesis, compared to WT mice. Instead, NLRP3 expression in 
hematopoietic cell compartment is essential for protection against 
colon cancer (25). This discrepancy may be due to experimental 
conditions or micro biota associated with mouse colonies.

Surprisingly, the results from these studies indicate that IL-18, 
but not IL-1β, plays a major role in suppressing colitis. Further 
mechanistic studies suggest that inflammasome-mediated 
IL-18 is critical for intestinal tissue repair and remodeling as 

discussed below. Moreover, injection of recombinant IL-18 could 
ameliorate the severity of DSS-induced colitis in inflammasome-
deficient mice. These results suggest that during this chemically 
induced inflammation, IL-18 produced during inflammasome 
activation is vital for the homeostasis of the epithelial barrier 
in the intestinal tissues. This conclusion is further supported by 
studies showing that IL-18 KO or IL-18R KO mice are also highly 
susceptible to DSS-induced colitis and AOM/DSS-induced colon 
cancer (82, 83). All these studies highlight the importance of 
inflammasome-dependent IL-18 production in suppressing 
colorectal tumorigenesis.

Role of iL-18 and Microbiota in 
inflammation-Associated Colon Cancer
The interaction of microbiota and the intestinal system is 
essential for maintaining host homeostasis and development 
of mucosal immunity (84–87). The human body, especially the 
gastrointestinal tract, is colonized by trillions of bacteria. While 
the commensal microorganisms are essential for the homeostasis 
of intestinal system and the development of host immune system, 
altered community representation and function of microbial spe-
cies in the gut ecosystem, a state called dysbiosis, could induce 
intestinal inflammation and epithelial neoplasia (85, 87–95).

The commensal microbiota and bacterial products are sensed 
and monitored by epithelial cells and innate immune cells via 
innate receptors, including TLRs and NLRs. As mentioned above, 
inflammasome-mediated IL-18 is critical for intestinal tissue 
remodeling and barrier function, which has significant impacts 
on intestinal inflammation, gut microbiota, and even the systemic 
immunity. At steady state, commensal bacteria and their products 
induce inflammasome activation and IL-18 production in the 
colon that supports intestinal barrier function and prevents com-
mensal dysbiosis (11, 25, 82, 96–98). Deficiency in inflammasome 
components leads to reduced production of IL-18, resulting in 
impaired epithelial remodeling and regeneration. Loss of barrier 
function causes increased commensal bacteria penetration, and 
enhanced inflammation, which may promote tumorigenesis and 
tumor growth. Dysbiosis has been observed in mice deficient for 
inflammasome components, including NLRP6, ASC, caspase-1, 
and IL-18 (25, 82, 96–99). For example, it has been proposed that 
NLRP6 is required for the maintenance of both composition and 
distribution of commensal bacteria in the gut. NLRP6 KO mice 
show altered microbial composition, exacerbated colitis upon 
chemically induced damage to the epithelial barrier, and inceased 
incidence of inflammation-associated colon cancer (100–102). 
While solid evidence has demonstrated the protective roles of 
inflammasomes and IL-18 in AOM/DSS-induced colon cancer, 
it would be informative to determine whether inflammasomes, 
IL-1β or IL-18 inhibit or promote colon cancer development 
in chronic or genetic colon cancer models as well as in human 
colorectal cancer patients.

Although several studies show that inflammasome deficiency 
leads to aberrations in microbial ecology or dysbiosis, a recent 
report by Mamantopoulos et  al. challenges the role of inflam-
masomes in gut microbiota and colitis (103). Mamantopoulos 
et al. tested whether inflammasomes shape gut ecology by care-
fully analyzing NLRP6-deficient mice and littermate controls. 
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Their results show that NLRP6 inflammasome deficiency does 
not affect gut microbiota composition and DSS-induced colitis 
when controlling for non-genetic confounders (103). This finding 
raises questions about previous publications related to the role of 
inflammasomes in controlling intestinal ecology. Therefore, fur-
ther studies are required to verify whether inflammasomes shape 
intestinal microbiota ecology, and how the dysbiotic microbiota 
associated with inflammasome deficiency affect tumorigenesis 
and tumor progression.

Cross Talk of inflammasome Mediators  
in Colitis and Colon Cancer
While numerous studies indicate the protective role of inflam-
masomes and IL-18 in DSS-induced colitis, recent studies 
demonstrate inflammasome-mediated IL-1β drives chronic 
inflammation in IL-10 KO mice and in human patients with 
IL-10R deficiency (38, 104, 105). It seems that IL-1β and IL-18 may 
have different roles in intestinal inflammation. As IL-1 and IL-18 
are main inflammatory mediators processed by inflammasomes, 
it remains unclear how the host immune system integrates IL-1 
and IL-18 signals during colitis and inflammation-associated 
colon cancer. Currently, there are a few studies on this topic. One 
possible mechanism is the differential transcriptional regulation 
of those two cytokines. Zhu and Kanneganti found that IL-18 
expression was increased and sustained after TLR stimulation, 
whereas IL-1β expression was upregulated but not sustained 
upon stimulation in  vitro. Furthermore, induction of IL-18 in 
macrophages requires type I IFN signaling (106). Interestingly, 
previous studies demonstrate that type I IFN suppresses transcrip-
tion of IL-1β gene in macrophages (107). Additionally, IL-1β and 
IL-18 may influence intestinal inflammation through exerting 
distinct effects on T  cell subsets. Accumulating evidence sug-
gests that IL-1 drives the generation of pathogenic Th17 cells in 
experimental autoimmune diseases, including colitis (108–111). 
In contrast, Harrison et  al. show that epithelial-derived IL-18 
acts directly on CD4 T cells to limit colonic Th17 cell differentia-
tion, partially through antagonizing IL-1R signaling (112). They 
also found that IL-18R1 signaling was critical for Foxp3 Treg 
cell-mediated control of colitis. These findings imply that IL-18 
reduces intestinal inflammation by suppressing Th17 cells and 
promoting Treg function. Finally, in addition to producing active 
IL-1 and IL-18, inflammasome activation induces pyroptosis, the 
inflammatory form of programmed cell death, through gasder-
min D. Currently it is unknown whether pyroptosis is involved 
in tumorigenesis. Recently, Wang et al. show that chemotherapy 
drugs induce pyroptosis through caspase-3 cleavage of gasdermin 
E (113). It would be interesting to know the role of pyroptosis and 
gasdermin D, and their relationship with IL-1 and IL-18 in tumor 
development and therapies.

inflammasomes Promote Cancer 
Development
Skin Cancer
Several reports indicate that inflammasomes and IL-1 promote 
inflammation-induced skin cancer in a two-stage carcino-
genesis-induced papilloma model. Drexler et  al. found that 

IL-1R- and caspase-1-deficient mice were partially protected 
against skin cancer induced by 7,12-dimethylbenz(a)anthracene 
(DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA) treat-
ments (114). Caspase-1 and IL-1R KO mice have a later onset 
and reduced incidence of tumors after DMBA/TPA treatments, 
compared with WT mice. In an independent study, Chow et al. 
also found that NLRP3 KO mice exhibited reduced skin papil-
loma lesions in the inflammation-induced skin cancer model 
(115). These data suggest that inflammasome-dependent IL-1β 
production contributes to the development of epithelial skin 
cancer. Surprisingly, Drexler et al. found that mice fully deficient 
for ASC displayed a similar incidence of skin papilloma as WT 
mice. To dissect the role of the ASC molecule, they generated 
conditional KO of ASC in myeloid cells and keratinocytes. Results 
show that mice specifically deficient for ASC in myeloid cells are 
protected from DMBA/TPA-induced skin cancer, suggesting a 
tumor-promoting role of inflammasomes and IL-1R signaling 
in myeloid cells. In contrast, mice specifically deficient for ASC 
in keratinocytes develop more tumors, compared with WT 
controls, suggesting that ASC suppresses tumor development in 
keratinocytes. Furthermore, expression of ASC protein is lost in 
human cutaneous squamous cell carcinoma (SCC). These results 
indicate that ASC has complicated roles in tumor development: 
ASC functions as a tumor suppressor in keratinocytes, but a 
tumor-promoter in myeloid cells (114). Interestingly, Okamoto 
et  al. demonstrated that late stage human melanoma cell lines 
constitutively synthesize and secrete IL-1β through activated 
NLRP3 inflammasome, which requires no exogenous stimula-
tion. In contrast, early stage melanoma cells need a stimulation 
of IL-1R to induce the production of IL-1β (116). Moreover, the 
production of IL-1β by melanoma cells could be inhibited by 
the caspase-1 inhibitor or IL-1R blockade. The authors suggest 
that the inflammasome/IL-1 autocrine loop contributes to the 
phenotype and progression of human melanoma.

A recent study unveils a very exciting finding about genetic 
mutations of the NLRP1 inflammasome in some skin cancers 
(31). There are two overlapping genetic skin disorders: multiple 
self-healing palmoplantar carcinoma (MSPC) and familial 
keratosis lichenoides chronica (FKLC), whose symptoms include 
numerous ulcerative, hyperkeratotic nodular growths on plantar 
and palmar skin. FKLC and MSPC skin lesions clinically resem-
ble rapidly growing benign proliferative epithelial skin lesions 
known as keratoacanthomas, but histologically display char-
acteristics of well-differentiated SCCs (31, 117). Furthermore, 
affected patients have increased susceptibility to malignant SCCs. 
Elegant research work from Reversade’s lab establishes a connec-
tion between genetic mutations of NLRP1 gene and increased 
susceptibility to skin cancer in human patients (31). To identify 
the genetic mutations in these two skin disorders, Zhong et al. 
performed whole-exome sequencing on genomic DNA isolated 
from affected patients, and found gain-of-mutations within the 
NLRP1 locus. Previous work showed that that NLRP1 is the most 
prominently expressed inflammasome in human skin. Functional 
studies of these mutations reveal that gain-of-function mutations 
in NLRP1 increase susceptibility to skin cancer, and a unique 
regulatory auto-inhibition mechanism in the NLRP1 inflam-
masome. In WT NLRP1, the Pyrin (PYD) and LRR domains 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


5

Kantono and Guo Inflammasome and Cancer

Frontiers in Immunology | www.frontiersin.org September 2017 | Volume 8 | Article 1132

interact with each other to inhibit its self-oligomerization. 
However, MSPC and FKLC associated mutations change the 
structure of these two domains, leading to constitutive NLRP1 
self-oligomerization and inflammasome activation (31). As a 
result, keratinocytes from affected patients display spontaneous 
inflammasome activation and IL-1 secretion. Therefore, NLRP1 
mutants cause skin hyperplasia via paracrine constitutive  
active inflammatory signaling. Together, these studies demon-
strate that germline, gain-of-function NLRP1 mutations cause 
skin cancer and skin disorders. This is also the first study that 
provides genetic and functional evidence linking inflammasome 
mutations with cancer development.

Breast Cancer
Our recent study has demonstrated that inflammasome and IL-1β 
play a critical role in promoting tumor growth and metastasis in 
breast cancer (30). Our results show that tumor growth is associ-
ated with elevated levels of IL-1β in tumor microenvironments 
in mouse mammary tumor models and human breast cancer 
tissues. To evaluate the impact of inflammasome activities on 
tumor growth and metastasis, we utilized an orthotopic mam-
mary gland tumor model in WT and inflammasome deficient 
mice. Compared to WT mice, primary tumor growth and lung 
metastasis in inflammasome-deficient mice were significantly 
reduced. Similarly, we found that IL-1R KO mice had reduced 
tumor growth after injection of breast cancer cells. Collectively, 
these results suggest that the inflammasome and IL-1 pathway 
promote tumor growth and metastases of breast cancer. Our data 
also show that inflammasome activation promotes the infiltra-
tion of myeloid cells such as tumor-associated macrophages 
(TAMs) and myeloid-derived suppressor cells. Furthermore, 
blocking IL-1R signaling with an IL-1R antagonist or anti-IL-1R 
antibody inhibits tumor growth and metastasis accompanied by 
decreased myeloid cell recruitment. We also found that targeting 
the inflammasome/IL-1 pathway leads to reduced tumor growth 
and metastasis in the xenograft mouse model of human breast 
cancer cells (30). Our results suggest that inflammasome activa-
tion and IL-1β production in TAMs provides an inflammatory 
microenvironment promoting breast cancer progression.

In another study, Kolb et al. show that obesity-induced NLRC4 
inflammasome activation contributes to breast cancer progres-
sion (32). Obesity is one of the major risk factors for tumor 
development, including breast cancer. It causes metabolic and 
inflammatory changes that favor tumor growth and progres-
sion. Kolb et al. found that the obesity-associated tumor growth 
depended on caspase-1, as caspase-1 KO mice had significantly 
reduced tumor growth under experimental obesity conditions. 
In contrast, caspase-1 KO and WT mice displayed similar tumor 
growth under normal weight conditions. The authors further 
show that obesity is associated with NLRC4 inflammasome 
activation and IL-1β production in myeloid cells, which in turn 
induces VEGF and angiogenesis. Furthermore, tumor-bearing 
mice treated with metformin inhibit obesity-associated tumor 
growth (32). Currently, it is unclear how obesity is linked to 
NLRC4 activation in this tumor model. Nevertheless, this study 
establishes a causal link between obesity, inflammasome activa-
tion, and breast cancer progression.

The Complicated Roles of inflammasomes 
in Other Types of Cancer
NOD-like receptors have many family members in human or 
mouse genome. It is not surprising that different inflammasomes 
may have different or opposite roles in tumor development 
depending on their expression patterns and tumor types.  
In addition to the tumors we discussed above, studies on other 
types of tumors are starting to emerge. For example, Daley 
et  al. show that NLRP3 signaling drives macrophage-induced 
adaptive immune suppression in pancreatic carcinoma (118). 
Pancreatic ductal adenocarcinoma (PDA) is associated with 
very high mortality rate with no effective therapy options. PDA 
is also characterized with inflammatory and immunosuppres-
sive tumor microenvironments (119–121). Daley et  al. found 
that NLRP3 deletion was protective against PDA (118). Their 
results show that NLRP3 promotes the expansion of immu-
nosuppressive macrophages in PDA, which inhibit antitumor 
T cell response. Inflammasome activation and IL-1 signaling are 
also implicated in the development of asbestos-induced meso-
thelioma (122, 123). On the other hand, Wei et al. found that 
inflammasomes might suppress the development of human liver 
cancer (124). Emerging evidence indicates that inflammasomes 
play an important role in non-alcoholic fatty liver disease, a 
spectrum of metabolic disorders ranging from steatosis (NAFL) 
to steatohepatitis (NASH) to cirrhosis. Moreover, hepatic stea-
tosis or cirrhosis is strongly associated with the development of 
hepatocellular carcinoma (125, 126). While many studies dem-
onstrate that inflammasomes contribute to the pathogenesis of 
liver diseases, some reports show that inflammasome activities 
can inhibit liver steatosis (99, 127, 128). Moreover, the role of 
inflammasomes in HCC is not well studied. By analyzing the 
expression of NLRP3 components in HCC tissues and cor-
responding non-cancerous liver tissues, Wei et al. showed that 
the expression of inflammasome components was significantly 
decreased or completely lost in human HCC tissues, and that the 
deficiency in inflammasome expression is positively correlated 
with the advanced stages of HCC (124). This correlative analysis 
suggests that inflammasomes may suppress the development of 
human liver cancer. However, further clinical and experimental 
studies are needed to determine the role of inflammasomes and 
effector cytokines in liver cancer initiation and progression.

The inflammasome-independent Role  
of AiMs and ASC in Cancer
Recent progress also indicates that there is an inflammasome-
independent role of inflammasome components, particularly 
AIM2 and ASC, in tumor development. Man et  al. showed 
that AIM2 suppressed colon cancer development by regulating 
intestinal stem cell proliferation (26). AIM2 was initially identi-
fied as a tumor suppressor in melanoma (129). Man et al. found 
that Aim2-deficient mice were hypersusceptible to colon cancer 
development, but inflammasome-associated cytokine levels were 
generally not affected. The results further demonstrate that dele-
tion of AIM2 leads to the expansion of tumor-initiating stem cells 
through aberrant Wnt/β-catenin pathway (26). Similarly, Wilson 
et al. also found that there was an inflammasome-independent 
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role of AIM2 in suppressing colon cancer development through 
DNA-PK and Akt signal pathways (130).

It has been shown that ASC is overexpressed or silenced in 
some tumors. Previous studies report aberrant methylation of 
ASC in breast, gastric, and prostate cancer (131, 132). There 
have been also studies showing that ASC inhibits tumorigenesis 
in primary melanoma cells by NF-κB suppression and p53/p21-
related cell apoptosis (132–134). This may allude to an antitumor 
role behind ASC. Treating primary mouse keratinocytes or the 
human keratinocyte cell line with UVB-induced ASC-dependent 
phosphorylation of p53 and expression of p53 target genes (31). 
These results suggest that ASC may suppress tumor cells through 
induction of apoptosis or via p53 activation. It also suggests that 
ASC could be a novel target for anticancer therapy.

Perspectives
Although inflammasomes are essential for host defense against 
pathogens and contribute to autoimmune disease, their roles in 
tumor progression are much more complicated. The inflamma-
some has been shown to be either tumor promoting or tumor 
suppressive in various cancers. Thus, inflammasomes function as 
a double-edged sword in tumorigenesis as well as the anticancer 
immunity. We hypothesize that the exact role of an inflamma-
some depends on multiple factors, including its expression 
patterns, effector molecules, tumor types, and stages of tumor 
development. Tumor microenvironments and gut microbiota 
may also influence the function of inflammasomes and host 
immunity, eventually tumor progression (Figure  1). To better 
understand the critical role that inflammasomes in cancer, and 
to develop novel therapeutics, a number of questions need to be 
addressed: (1) how inflammasomes, such as NLRP1, NLRP3, 
and NLRC4, are activated during tumor growth and progression;  
(2) the regulation of inflammasomes by other signaling molecules 
or pathways and the implication of such interactions in tumor 
development; (3) effects of inflammasome activation in different 
cell types on tumor progression; (4) effects of each inflammasome 

pathway on host antitumor immunity and immunotherapy; and 
(5) dysregulation or mutations of inflammasome components in 
human cancer.

Our results suggest that targeting the inflammasome/IL-1 path-
way in tumor microenvironments may provide a novel approach 
for the treatment of certain cancer, such as breast cancer. On the 
other hand, the immunomodulatory of inflammasome activities, 
particularly IL-18, can be harnessed for immunotherapy against 
cancer. IL-18 has been shown to play an important role in the 
induction of IFNγ production, increasing NK  cell activity and 
T cell proliferation (135–140). Notably, those immunoregulatory 
activities of IL-18 are overlapped with that of IL-12. In fact, IL-18 
and IL-12 can cooperate to induce optimal IFNγ production, 
Th1 responses, and NK cell activation in response to pathogens 
(141–143). As such, systemic injection of IL-18 protein and over-
expressing IL-18 have been reported to enhance T cell response 
and NK cell function in several tumor models such as B16 mela-
noma (135–137, 141, 142, 144, 145). IL-18 also has been tested 
in clinical trials to treat different human tumors (146). Therefore, 
IL-18 alone or in combination with other therapeutic drugs may 
hold a promising potential for cancer treatment. Furthermore, 
IL-18-activated NK  cells or Th1  cells could be developed as 
immune cell therapies against cancer.
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