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Roles of neutrophils in cancer growth and progression

Maria Rosaria Galdiero1,2,3 Gilda Varricchi1,2,3 Stefania Loffredo1,2,3

AlbertoMantovani4,5 GianniMarone1,2,3,6

1Department of TranslationalMedical Sciences

(DiSMeT), University ofNaples Federico II,

Naples, Italy

2Center for Basic andClinical Immunology

Research (CISI), University ofNaples Federico II,

Naples, Italy

3WAOCenter of Excellence, University of

Naples Federico II, Naples, Italy

4Humanitas Clinical andResearchCenter,

Rozzano,Milan, Italy

5Department of Biomedical Sciences, Humanitas

University,Milan, Italy

6Institute of Experimental Endocrinology and

Oncology “Gaetano Salvatore” (IEOS), National

ResearchCouncil (CNR), Naples, Italy

Correspondence

MariaRosariaGaldiero,DepartmentofTransla-

tionalMedical Sciences (DiSMeT),University of

NaplesFederico II, 80131,Naples, Italy.

Email:mariarosaria.galdiero@unina.it

Abstract
Chronic inflammation is a well-known tumor-enabling capacity, which allows nascent tumors

to acquire all the hallmark capabilities, including the escape from immunosurveillance. Soluble

and cellular inflammatory mediators constitute the complex network of the tumor microenvi-

ronment, in which tumors grow and with which constantly interact. Myeloid cells (e.g., tumor

associated macrophages) are pivotal players of the tumor microenvironment and are character-

ized by plasticity, which consists of the ability to acquire distinct phenotypes in response to the

microenvironment in which they reside. Neutrophils are emerging as important players of tumor

microenvironment, given their heterogeneity and plasticity. Increasing evidence suggests a dual

role for neutrophils in modulating tumor behavior and highlights the need for a reassessment of

neutrophil functions in cancer initiation and progression.
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1 INTRODUCTION

Cancer-related inflammation (CRI) was already known for a long time,

so that cancer was considered as “a wound that does not heal.”1 The

presence of an immune infiltrate around tumorswas largely attributed

to an attempt of the immune system to eradicate cancer. During the

last several decades, a growing number of observations have proved

that CRI promotes tumor initiation and progression and enables

cancer to acquire all hallmark capabilities, including the ability to

evade immunosurveillance.2

This new point of view emphasized the novel model that tumors

should no longer be viewedmerely as genetic diseases. Indeed, cancers

initiate, progress, and respond to therapy within a complex microenvi-

ronment with which they continuously interact.

Tumor microenvironment (TME) is a complex network in which

myeloid cells play pivotal roles in initiating and promoting cancer

Abbreviations: 5-FU, 5-fluorouracil; BCG, bacillus Calmette-Guerin; CRC, colorectal cancer;

CRI, cancer-related inflammation; G-MDSC, granulocytic myeloid-derived suppressor cell;
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PD-L1, programmed death-ligand 1; ROS, reactive oxygen species; sPLA2, secreted
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development. Among tumor-infiltrating immune cells, macrophages

are well-known players in CRI and are typically characterized by plas-

ticity, that is, the ability to acquire a wide spectrum of activation states

in response to the signals derived from themicroenvironment.3,4

Beyond macrophages, neutrophils have recently been shown to

play many roles in the various phases of cancer initiation and

progression.5 Indeed, they represent a surprisingly heterogeneous

population, endowedwith unsuspected plasticity.6

In this review, we will recapitulate the main biological aspects of

neutrophils and their roles in cancer development. We will evaluate

their role(s) as prognostic and predictive biomarkers in human cancers

and we will explore the functions of these tumor-infiltrating immune

cells as means or targets of anticancer therapeutic approaches.

1.1 Roles of neutrophils in tumor growth

and progression

1.1.1 Pro-tumor versus anti-tumor functions

of neutrophils

Neutrophils have been shown to play key roles in CRI to exert anti-

tumoral or pro-tumoral functions and tobeendowedwithunsuspected

plasticity.6–8 Fridlender and colleagues made the seminal observa-

tion that in tumor-bearing mice, neutrophils acquired a pro-tumoral
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phenotype under the influence of TGF-𝛽 .7 Indeed, TGF-𝛽 blockade

led to the tumor infiltration of neutrophils with increased cytotox-

icity, high expression of TNF-𝛼, CCL3, and ICAM-1, and low levels

of arginase-1. TGF-𝛽 inhibition also promoted a T-cell anti-tumor

response, which involved neutrophils as effector cells.7 Mirroring the

M1/M2 paradigm, neutrophils were then proposed to polarize in two

distinct activation states: an anti-tumor N1 or a pro-tumor N2 phe-

notype in response to signals derived from TME. In murine models

of melanoma and fibrosarcoma, IFN-𝛽 deletion favored the infiltration

of neutrophils characterized by a high expression of CXCR4, VEGF-

A, and metalloprotease 9 (MMP-9).9 These results suggested a pivotal

role for type I IFNs in polarizing neutrophils toward a N1 anti-tumoral

phenotype.6 However, to date, these findings were obtained only in

murine models and the existence of polarized neutrophil populations

still need to be demonstrated in humans.

1.1.2 Neutrophil recruitment in tumormicroenvironment

Within the TME, CXC chemokines produced by tumor and stromal

cells and associated with cancer growth and progression also retain

neutrophil-recruiting functions.10–12 For instance, human head and

neck squamous cell carcinoma (HNSCC) cell lines produced CXCL8

and macrophage inhibiting factor, which induced neutrophil chemo-

taxis through the engagement of CXCR2.13,14 Hepatocellular car-

cinoma cells also recruited neutrophils through the production of

CXCL8.15 We recently found that thyroid cancer (TC) cells pro-

duce CXC chemokines, which were able to recruit neutrophils in a

CXCR1/CXCR2-dependent manner (unpublished results). Moreover,

TC-derived conditionedmedia were able to modify neutrophil biology,

in terms of activation, modulation of survival, gene expression, and

release of oxygen derivatives, suggesting an interesting role of tumor-

derived chemokines in influencing neutrophil plasticity.

Several experimental tumor models showed a central role for

CXCR2 in promoting lung and pancreatic cancers.16,17 Indeed,

CXCR2 deletion or neutrophil depletion suppressed inflammation-

induced and spontaneous carcinogenesis in mice.18 In addition, in

a murine model of graft tumor, CXCL17 promoted cancer growth

together with the increased infiltration of a myeloid subset of

CD11b+Gr1+F4/80−.19 In a conditional genetic murine model of lung

cancer driven by K-ras activation and p53 inactivation, macrophages

and neutrophils precursors accumulated in the spleen and relocated

from the spleen to the tumor, suggesting a role for the spleen as reser-

voir for tumor-promotingmyeloid cells.20

1.1.3 Neutrophil-derivedmediators in tumor growth

Neutrophils play important roles in tumor initiation. Indeed, neu-

trophils release oxygen and nitrogen free radicals, which promoted

DNA point mutations and genetic instability.21 Neutrophil gran-

ule proteins also play a dual role in tumor progression. Indeed,

neutrophil elastase (NE) was taken up by lung cancer cells and

degraded insulin receptor substrate-1, which usually inhibits PI3K.

This event unleashedPI3K activation andPDGFR signaling, thus favor-

ing tumor cell proliferation.22 NE was also involved in neutrophil-

related epithelial-to-mesenchymal transition.23 By contrast, NE could

also restrain antitumor immune response. In fact, NE taken up by

breast cancer cells upregulated the expression of HLA class I in tumor

cells, thus increasing the responsiveness of breast cancer cells to

adaptive immunity.24 Moreover, once taken up by breast cancer cells,

NE cleaved cyclin E, which was then presented in a truncated form

in HLA-I context and efficiently activated a CTL-mediated antitu-

mor response.25 Neutrophil-derived oncostatin M up-regulated VEGF

production in breast cancer cells, promoting tumor cell detachment

and invasiveness.26 In bronchoalveolar carcinoma patients, hepato-

cyte growth factor in broncholavage fluid was correlated with neu-

trophil infiltration andwas associated with poor prognosis.27,28

Neutrophils also release TRAIL, which retains important anti-

tumoral activities.29,30 Indeed,Mycobacterium bovis bacillus Calmette-

Guerin (BCG) induced the release of TRAIL from neutrophils, and this

mechanismwasproposed toplaya role in theanticancer effectsofBCG

in human bladder cancer.31 In addition, in chronic myeloid leukemia

patients, the release of TRAIL from neutrophils induced by IFN-𝛼 ther-

apy promoted apoptosis of leukemic cells.32,33

In patients with early-stage lung cancer, a pro-inflammatory neu-

trophil phenotype, with high production of CCL2, CCL3, CXCL8, and

IL-6, as well as high expression of costimulatory molecules (e.g., CD86

and OX40L) was found. These tumor-associated neutrophils (TANs)

stimulated T-cell proliferation and IFN-𝛾 release, mainly in a contact-

dependent manner34 and amplified a positive feedback loop that

suggested an anti-tumoral role for TANs in early stages of human

lung tumor.34

In a mouse model of PTEN-deficient uterine cancer, an inhibitory

role for neutrophils was also described. Indeed, TANs inhibited early-

stage tumor growth and retarded malignant progression by induc-

ing tumor cell detachment from the basement membrane. TANs were

recruited at tumor site independently of lymphocytes and cellular

senescence but in the context of the tumor's intrinsic inflammatory

response to hypoxia. In humans, a neutrophil gene signature correlated

with improved survival in PTEN-deficient uterine cancer.35

By contrast, in colorectal cancer (CRC) patients, an increased num-

ber of TANs (defined as “PMN-myeloid derived suppressor cells”) were

found, which were recruited and activated by tumor-infiltrating 𝛾𝛿T

cells, through the release ofCXCL8/IL-8 andGM-CSF. TheseTANspro-

duced high levels of arginase I and reactive oxygen species (ROS) and

potently inhibited T-cell proliferation and IFN-𝛾 production.36

1.1.4 Pro-angiogenic versus anti-angiogenic functions

of neutrophils

Neutrophils also play a dual role in modulating tumor angiogene-

sis. Neutrophils are main producers of VEGF-A and release high lev-

els of MMP-9, which is responsible for the release of the active

form of VEGF-A from the extracellular matrix.15,37,38 Interestingly,

neutrophils release MMP-9 in the absence of the inhibitor tissue

inhibitor of proteases, thus further enhancing the pro-angiogenic and

pro-invasive activity of MMP-9.39 By contrast, in a murine model of

breast cancer, intratumoral delivery of MMP-9 reduced tumor growth

and angiogenesis, suggesting that MMP-9 also retains anti-angiogenic

functions.40 In a xenograftmurinemodel, under the influenceofG-CSF,
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neutrophils released the pro-angiogenicmolecule Bv8.41 Interestingly,

tumors resistant to anti-VEGF therapy showed high infiltration of neu-

trophils and drug resistance was associated with G-CSF-induced Bv8

neutrophil expression.42,43

Neutrophils also express a number of anti-angiogenic molecules.

For example, NE cleaved VEGF and FGF-2, giving rise to the

angiostatin-like fragments from plasminogen, which suppressed

VEGF- and FGF-2-induced angiogenesis.44,45 We found that exoge-

nous Group V (hGV) and Group X (hGX) secreted phospholypases

(sPLA2s) induce the release of VEGF-A, angiopoietin 1 , and CXCL8/IL-

8 from human neutrophils. Moreover, hGV sPLA2 induced the

secretion of the anti-angiogenic isoform of VEGF-A, namely, VEGF-

A165b.
46

1.1.5 Role of neutrophils inmodulatingmetastastatic

tumor behavior

Melanoma cells produced CXCL8, which up-regulated 𝛽2-integrin

expression on neutrophils. These, in turn, interacted with ICAM-

1 expressed by melanoma cells, thus favoring metastatic seeding

of tumor cells.47 Neutrophil extracellular traps also captured circu-

lating tumor cells and favored their engraftment to distant organ

sites.48 In contrast, in a murine model of transplanted breast cancer,

under the influence of G-CSF and tumor-derived CCL2, neutrophils

inhibited breast metastasis in the premetastatic lung in a H2O2-

dependent manner.49

Interestingly, in a murine model of bitransgenic mice expressing

conditioned IL-17A along with Kras, lung tumors grew more rapidly

and mice displayed a reduced survival compared to wild types. Lev-

els of IL-6, CXCL1, and G-CSF were increased in lungs of transgenic

mice and TANs were increased, whereas tumor-infiltrating lympho-

cytes were reduced, compared to controls. Neutrophil depletion by

anti-Ly6Gantibodies aswell as IL-6 blockage efficiently reduced tumor

growth, but anti-PD-1 therapy was not effective, suggesting a role for

IL-17A in promoting anti-PD-1 resistance and lung tumor growth in a

neutrophil-dependent manner.50

1.1.6 High-density versus low-density neutrophils and

MDSCs

An increasing number of observations have highlighted the surprising

plasticity and heterogeneity of neutrophils, in humans and in experi-

mental cancermodels. Indeed, peripheral blood human neutrophils are

usually purified on a discontinuous density gradient (Ficoll). Follow-

ing this separation, neutrophils segregate in the high-density granu-

locytic fraction, whereas peripheral blood mononuclear cells (PBMC)

are found in the low-density (LD) mononuclear fraction.51 However,

in chronic inflammatory conditions such as HIV infection, autoimmu-

nity and cancer, neutrophils can be also found in the LD fraction.52–55

This proportion of low density neutrophils (LDNs) increases with can-

cer progression, displays T-cell suppressive functions, and is repre-

sented by both mature and immature granulocytes.56 Immature LDNs

havebeenconsideredas granulocyticmyeloid-derived suppressor cells

(G-MDSCs). MDSCs are a heterogeneous subset of myeloid cells that

are expanded in peripheral blood and spleen of tumor-bearing mice

and cancer patients. These cells are characterized by the capacity of

suppressing T cell activation and proliferation.57,58 In previous papers,

some authors described G-MDSCs as immature myeloid cells, which

inhibited CD8+ T-cell mediated anti-tumor immune response through

the release of arginase I.59 By contrast, several authors described

these cells as a subpopulation of activated degranulated neutrophils,

inhibiting T-cell response through the release of arginase I54,60 or

ROS.55 Transcriptomic analysis performed on naive neutrophils, TANs,

and G-MDSC in tumor-bearing mice found that TANs and G-MDSC

are distinct populations61 and that naïve neutrophils and G-MDSC

are more closely related to each other than to TANs.62 G-MDSCs

and LDNs display a number of similarities, such as the myeloid ori-

gin, morphological aspects, and surface markers, as well as the tumor-

promoting properties. For these reasons, there is no clear consen-

sus on the differences between these two cell populations. In tumor-

bearing mice as well as in cancer patients, among LDNs two subsets

were distinguished: a mature segmented one and a banded imma-

ture one, namely G-MDSC.63 While high-density neutrophils (HDN)

displayed anti-tumoral functions, LDN showed reduced chemotactic

activity, phagocytosis, oxidative burst, no significant cytotoxic activity

against tumor cells, andT-cell suppressive properties. Bothmature and

immature (G-MDSCs) LDNs displayed these cancer-promoting activ-

ities. Moreover, the authors showed that HDN can go through LDN

transition under the influence of TGF-𝛽 and acquire T-cell suppressive

properties, thus suggesting that part of the LDN fraction is a subset of

highly activatedmature neutrophils, with reduced inflammatory prop-

erties. They also proposed that LDN can switch to HDN, but to a lesser

extent than the opposite transition.63 These observations suggest that

neutrophils are a heterogeneous population, composed not only of ter-

minally differentiated cells as always thought. Indeed, these findings

highlight the heterogeneity and plasticity of circulating neutrophils in

cancer and recall for a rigorous reassessment of neutrophil characteri-

zation in cancer patients.

A schematic view of the roles of neutrophils in CRI is summarized

in Figure 1.

1.2 Neutrophils as prognostic/predictive

biomarkers in cancer patients

The relationship between TANs and prognosis in human cancers has

been already extensively discussed.64 Neutrophil infiltration within

human tumorswas correlatedwith poor patient outcome inmetastatic

and localized clear cell carcinomas, bronchioloalveolar, liver, uterine

cervical cancer, colorectal (CRC), and HNSCC.15,27,65–68 In addition,

neutrophil infiltration was associated with high tumor grade in human

gliomas and with aggressive pancreatic tumors.69,70 Recently, among

the tumor-infiltrating cells, neutrophils were found themost prevalent

immune cell type in non small cell lung cancer (NSCLC) tissues, nega-

tively correlated with tumor-infiltrating CD8+, CD4+, Th1, and Th17

cells and efficiently predicted patientmortality.71,72 By contrast, TANs

were associated with good patient prognosis in gastric73 and colorec-

tal cancer.74,75 These apparently controversial results could depend

on the type/subtype of tumors and on the techniques used to identify
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F IGURE 1 Dual role of neutrophils in cancer-related inflammation. Neutrophils can exert both pro-tumoral or anti-tumoral functions. TANs
canmediate cancer cell killing (through the release of ROS and neutrophil elastase) and apoptosis (through the release of TRAIL) and inhibit angio-
genesis (through the release of the anti-angiogenic VEGF-A165b) and potentiate T-cell adaptive immune response upon TGF-𝛽 inhibition. On the
other hand, TANs can induce genetic instability (through the release of ROS), favor tumor growth (through the production of growth factors and
NE), promote the remodeling of the extracellular matrix (ECM) and tumor cell invasive capabilities (through the release of proteases, hepatocyte
growth factor [HGF] and oncostatin M [OSM]), support angiogenesis and lymphangiogenesis (through the release of VEGFs, MMP-9, and Bv8),
and suppress anti-tumoral adaptive immunity (through arginine depletion and expression of suppressive soluble andmembranemolecules, such as
PD-L1). See the text for details

neutrophils within the tumors (e.g., hematoxylin–eosin stain vs.

immunohistochemistry).

An important task will be to investigate the predictive role of TANs

in cancer patients. In the only published study, performed on Stage

III CRC patients, TAN infiltration was associated with better response

to 5-fluorouracil (5-FU) based chemotherapy but with poor progno-

sis in patients treated with surgery alone.74 These results suggest a

dual clinical significance of TANs, depending on the administration of

chemotherapy and highlight the need for a re-evaluation of the role of

TANs as predictive factors for response to therapy in human cancers.74

Several studies have evaluated the prognostic and predictive value

of neutrophil-to-lymphocyte ratio (NLR) in peripheral blood of can-

cer patients. NLR is considered an indicator of systemic inflamma-

tion and predicted patient clinical outcome in several human cancers,

such as rectal,76 esophageal,77 prostate,78 pancreatic,79 and breast

cancer.80 Moreover, a high NLR score was associated with worst sur-

vival and displayed amore consistent prognostic value among patients

with advanced disease.81 The advantage of this score is that it can

be easily measured. However, its prognostic power is controversial.

Indeed, NLR is not a specific biomarker since it can be confounded

by other variables that influence the count of peripheral blood neu-

trophils and/or lymphocytes.82 Moreover, since circulating neutrophils

are not a homogeneous population, the mere count could not be a

reliable biomarker of their biological functions in cancer patients. In

addition, circulating neutrophils may not faithfully mirror the tumor-

related ones. Thus, further studies aimed at investigating circulat-

ing neutrophil-related markers that more likely reflect the TME are

needed to identify more specific biomarkers in cancer patients.

1.3 Neutrophils in anticancer therapeutic responses

Myeloid cells can influence the effectiveness of chemotherapeutic reg-

imens. Indeed, chemotherapeutic drugs exert their effects not only act-

ing on tumor cells, but also on tumor-related immune cells. Indeed,

some chemotherapeutic drugs, such as doxorubicin, determine an

“immunogenic cell death”: tumor cell death induces the expression of

“danger signals” (i.e., calreticulin, ATP, andHMGB-1), which recruit and

activate myeloid DC-like cells. These cells are particularly efficient in

capturing and presenting tumor cell antigens and give rise to an effec-

tive anti-tumor immune response.83,84

Immunotherapy with checkpoint inhibitors is an established part

of the therapeutic strategies for an increasing number of solid and

hematologic tumors.85 Recent evidence indicates that programmed

death-ligand 1 (PD-L1) is also expressed on neutrophils and is asso-

ciated with the development of numerous diseases, including HIV,86
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sepsis,87 Burkholderia pseudomallei infected disease,88 tuberculosis,89

andautoimmunity.90 Recently, neutrophils accumulating in gastric can-

cer tissues displayed a prolonged survival, an activated phenotype, and

high levels of PD-L1 expression. Increased infiltration of PD-L1+ neu-

trophils was associated with disease progression and poor patient sur-

vival. Moreover, neutrophils purified from peripheral blood of healthy

donors in vitro up-regulated PD-L1 when stimulated with gastric can-

cer cell line conditioned media. Finally, activated PD-L1+ neutrophils

inhibited the proliferation and activation of T cells, dampening anti-

tumor T-cell-mediated adaptive response to promote gastric cancer.91

Since neutrophils can retain tumor-promoting functions, targeting

these cells could be desirable. However, their depletion could lead

to deleterious “side effects”. Indeed, neutrophils play a central role

in host defense against pathogens and their depletion could lead to

immunosuppression. Neutrophil neutralization could be obtained by

inhibiting their recruitment or their effector molecules. In a murine

model of fibrosarcoma and prostate cancer, the inhibition of TAN

recruitment through CXCL8/IL-8 blockage reduced tumor growth and

angiogenesis.92 In addition, inmultiplemurinemodels of inflammation-

driven and spontaneous carcinogenesis, genetic or pharmacologic

abrogation of CXCR2 inhibited tumor development.18 Repertaxin, a

small inhibitor of CXCR1 and CXCR2, selectively targeted human

breast cancer stem cells and inhibited tumor growth in xenograft

murine models.93 The combination of repertaxin and 5-FU increased

gastric cancer cell apoptosis and inhibited proliferation, migration, and

invasion.94 Clinical trials investigating the role of repertaxin in breast

cancer patients, alone or in combination with chemotherapeutic drugs

(paclitaxel), are in progress (www.clinicaltriasl.gov).

The inhibitor of NE sivelastat inhibited breast cancer cell prolif-

eration and enhanced the anti-tumor effect of trastuzumab through

restoring the expression of Her2/Neu.95 Genetic deficiency and inhi-

bition of NE reduced the incidence of ultraviolet B-induced tumors

in mice.96 The NE inhibitor ONO-5046 reduced both primary and

metastatic growth of NSCLC in severe combined immunodeficiency

mice.97 NE inhibitors are currently undergoing clinical trials for treat-

ment of cystic fibrosis and respiratory diseases (www.clinicaltrials.gov)

and these results could also be useful for cancer research.

A neutrophil-based drug delivery system has been proponed in a

murine model of glioblastoma. Interestingly, neutrophils were loaded

with a cationic liposome containing paclitaxel (PTX-CL) and were

injected intravenously in tumor-bearing mice after surgical removal of

the primary tumor. After injection, neutrophils homed to the surgical

margins where inflammatory cytokines were abundant, and released

PTX-CL, giving rise to a high local delivery of PTX. By this thera-

peutic approach, tumor cells were killed and glioma recurrence was

delayed.Despite its limitations, this study shows that neutrophils could

be successfully harnessed to deliver drugs into the brain across the

blood/brain barrier.98

2 CONCLUSIONS

Cellular and humoral components of TME play important roles in can-

cer initiation and progression and in the response of most tumors to

therapy. Neutrophils are main components of CRI and participate in

the various phases of tumor initiation and progression. Cancer cells

as well as tumor-associated immune cells release a wide spectrum of

pro-tumorigenic and pro-angiogenic cytokines/chemokines. Targeting

these mediators as well as blocking pro-tumor functions could be use-

ful to inhibit tumor growth. On the other hand, fostering anticancer

immune responses by blocking immunosuppressive molecules (TGF-𝛽 ,

IL-10, CTLA-4, PD-1, and PD-L1) expressed either by cancer cells or by

tumor-infiltrating immune cells appears a promising therapeutic strat-

egy in different tumors.

A deeper insight into the molecular mechanisms regulating the link

between tumor-infiltrating immune cells and cancer cells could lead to

the identification of new prognostic/predictive biomarkers, as well as

a wider view of cancer immunotherapy, in an even more personalized

therapeutic approach.
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